(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD4
public class GCD4 {
public static int mod(int a, int b) {
while(a>=b && b > 0) {
a -= b;
}
return a;
}

public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
GCD4.main([Ljava/lang/String;)V: Graph of 212 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: GCD4.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 33 rules for P and 0 rules for R.


P rules:
983_0_gcd_LE(EOS(STATIC_983), i194, i202, i202) → 986_0_gcd_LE(EOS(STATIC_986), i194, i202, i202)
986_0_gcd_LE(EOS(STATIC_986), i194, i202, i202) → 989_0_gcd_Load(EOS(STATIC_989), i194, i202) | >(i202, 0)
989_0_gcd_Load(EOS(STATIC_989), i194, i202) → 992_0_gcd_LE(EOS(STATIC_992), i194, i202, i194)
992_0_gcd_LE(EOS(STATIC_992), i206, i202, i206) → 997_0_gcd_LE(EOS(STATIC_997), i206, i202, i206)
997_0_gcd_LE(EOS(STATIC_997), i206, i202, i206) → 1002_0_gcd_Load(EOS(STATIC_1002), i206, i202) | >(i206, 0)
1002_0_gcd_Load(EOS(STATIC_1002), i206, i202) → 1008_0_gcd_Store(EOS(STATIC_1008), i206, i202, i202)
1008_0_gcd_Store(EOS(STATIC_1008), i206, i202, i202) → 1011_0_gcd_Load(EOS(STATIC_1011), i206, i202, i202)
1011_0_gcd_Load(EOS(STATIC_1011), i206, i202, i202) → 1015_0_gcd_Load(EOS(STATIC_1015), i202, i202, i206)
1015_0_gcd_Load(EOS(STATIC_1015), i202, i202, i206) → 1018_0_gcd_InvokeMethod(EOS(STATIC_1018), i202, i206, i202)
1018_0_gcd_InvokeMethod(EOS(STATIC_1018), i202, i206, i202) → 1020_0_mod_Load(EOS(STATIC_1020), i202, i206, i202, i206, i202)
1020_0_mod_Load(EOS(STATIC_1020), i202, i206, i202, i206, i202) → 1201_0_mod_Load(EOS(STATIC_1201), i202, i206, i202, i206, i202)
1201_0_mod_Load(EOS(STATIC_1201), i202, i206, i202, i321, i202) → 1203_0_mod_Load(EOS(STATIC_1203), i202, i206, i202, i321, i202, i321)
1203_0_mod_Load(EOS(STATIC_1203), i202, i206, i202, i321, i202, i321) → 1204_0_mod_LT(EOS(STATIC_1204), i202, i206, i202, i321, i202, i321, i202)
1204_0_mod_LT(EOS(STATIC_1204), i202, i206, i202, i321, i202, i321, i202) → 1206_0_mod_LT(EOS(STATIC_1206), i202, i206, i202, i321, i202, i321, i202)
1204_0_mod_LT(EOS(STATIC_1204), i202, i206, i202, i321, i202, i321, i202) → 1207_0_mod_LT(EOS(STATIC_1207), i202, i206, i202, i321, i202, i321, i202)
1206_0_mod_LT(EOS(STATIC_1206), i202, i206, i202, i321, i202, i321, i202) → 1209_0_mod_Load(EOS(STATIC_1209), i202, i206, i202, i321) | <(i321, i202)
1209_0_mod_Load(EOS(STATIC_1209), i202, i206, i202, i321) → 1212_0_mod_Return(EOS(STATIC_1212), i202, i206, i202, i321)
1212_0_mod_Return(EOS(STATIC_1212), i202, i206, i202, i321) → 1214_0_gcd_Store(EOS(STATIC_1214), i202, i321)
1214_0_gcd_Store(EOS(STATIC_1214), i202, i321) → 1217_0_gcd_Load(EOS(STATIC_1217), i321, i202)
1217_0_gcd_Load(EOS(STATIC_1217), i321, i202) → 1220_0_gcd_Store(EOS(STATIC_1220), i321, i202)
1220_0_gcd_Store(EOS(STATIC_1220), i321, i202) → 1223_0_gcd_JMP(EOS(STATIC_1223), i202, i321)
1223_0_gcd_JMP(EOS(STATIC_1223), i202, i321) → 1227_0_gcd_Load(EOS(STATIC_1227), i202, i321)
1227_0_gcd_Load(EOS(STATIC_1227), i202, i321) → 979_0_gcd_Load(EOS(STATIC_979), i202, i321)
979_0_gcd_Load(EOS(STATIC_979), i194, i195) → 983_0_gcd_LE(EOS(STATIC_983), i194, i195, i195)
1207_0_mod_LT(EOS(STATIC_1207), i202, i206, i202, i321, i202, i321, i202) → 1210_0_mod_Load(EOS(STATIC_1210), i202, i206, i202, i321, i202) | >=(i321, i202)
1210_0_mod_Load(EOS(STATIC_1210), i202, i206, i202, i321, i202) → 1213_0_mod_LE(EOS(STATIC_1213), i202, i206, i202, i321, i202, i202)
1213_0_mod_LE(EOS(STATIC_1213), i202, i206, i202, i321, i202, i202) → 1216_0_mod_Load(EOS(STATIC_1216), i202, i206, i202, i321, i202) | >(i202, 0)
1216_0_mod_Load(EOS(STATIC_1216), i202, i206, i202, i321, i202) → 1219_0_mod_Load(EOS(STATIC_1219), i202, i206, i202, i202, i321)
1219_0_mod_Load(EOS(STATIC_1219), i202, i206, i202, i202, i321) → 1222_0_mod_IntArithmetic(EOS(STATIC_1222), i202, i206, i202, i202, i321, i202)
1222_0_mod_IntArithmetic(EOS(STATIC_1222), i202, i206, i202, i202, i321, i202) → 1224_0_mod_Store(EOS(STATIC_1224), i202, i206, i202, i202, -(i321, i202)) | >(i202, 0)
1224_0_mod_Store(EOS(STATIC_1224), i202, i206, i202, i202, i323) → 1229_0_mod_JMP(EOS(STATIC_1229), i202, i206, i202, i323, i202)
1229_0_mod_JMP(EOS(STATIC_1229), i202, i206, i202, i323, i202) → 1371_0_mod_Load(EOS(STATIC_1371), i202, i206, i202, i323, i202)
1371_0_mod_Load(EOS(STATIC_1371), i202, i206, i202, i323, i202) → 1201_0_mod_Load(EOS(STATIC_1201), i202, i206, i202, i323, i202)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1204_0_mod_LT(EOS(STATIC_1204), x0, x1, x0, x2, x0, x2, x0) → 1204_0_mod_LT(EOS(STATIC_1204), x2, x0, x2, x0, x2, x0, x2) | &&(&&(>(x2, 0), <(x2, x0)), >(x0, 0))
1204_0_mod_LT(EOS(STATIC_1204), x0, x1, x0, x2, x0, x2, x0) → 1204_0_mod_LT(EOS(STATIC_1204), x0, x1, x0, -(x2, x0), x0, -(x2, x0), x0) | &&(>=(x2, x0), >(x0, 0))
R rules:

Filtered ground terms:



1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8) → 1204_0_mod_LT(x2, x3, x4, x5, x6, x7, x8)
EOS(x1) → EOS
Cond_1204_0_mod_LT1(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_1204_0_mod_LT1(x1, x3, x4, x5, x6, x7, x8, x9)
Cond_1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_1204_0_mod_LT(x1, x3, x4, x5, x6, x7, x8, x9)

Filtered duplicate args:



1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7) → 1204_0_mod_LT(x2, x6, x7)
Cond_1204_0_mod_LT(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_1204_0_mod_LT(x1, x3, x7, x8)
Cond_1204_0_mod_LT1(x1, x2, x3, x4, x5, x6, x7, x8) → Cond_1204_0_mod_LT1(x1, x3, x7, x8)

Filtered unneeded arguments:



Cond_1204_0_mod_LT(x1, x2, x3, x4) → Cond_1204_0_mod_LT(x1, x3, x4)
Cond_1204_0_mod_LT1(x1, x2, x3, x4) → Cond_1204_0_mod_LT1(x1, x3, x4)
1204_0_mod_LT(x1, x2, x3) → 1204_0_mod_LT(x2, x3)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1204_0_mod_LT(x2, x0) → 1204_0_mod_LT(x0, x2) | &&(&&(>(x2, 0), <(x2, x0)), >(x0, 0))
1204_0_mod_LT(x2, x0) → 1204_0_mod_LT(-(x2, x0), x0) | &&(>=(x2, x0), >(x0, 0))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT(&&(&&(>(x2, 0), <(x2, x0)), >(x0, 0)), x2, x0)
COND_1204_0_MOD_LT(TRUE, x2, x0) → 1204_0_MOD_LT(x0, x2)
1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT1(&&(>=(x2, x0), >(x0, 0)), x2, x0)
COND_1204_0_MOD_LT1(TRUE, x2, x0) → 1204_0_MOD_LT(-(x2, x0), x0)
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0, x2[0], x0[0])
(1): COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])
(2): 1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(x2[2] >= x0[2] && x0[2] > 0, x2[2], x0[2])
(3): COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(x2[3] - x0[3], x0[3])

(0) -> (1), if (x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0x2[0]* x2[1]x0[0]* x0[1])


(1) -> (0), if (x0[1]* x2[0]x2[1]* x0[0])


(1) -> (2), if (x0[1]* x2[2]x2[1]* x0[2])


(2) -> (3), if (x2[2] >= x0[2] && x0[2] > 0x2[2]* x2[3]x0[2]* x0[3])


(3) -> (0), if (x2[3] - x0[3]* x2[0]x0[3]* x0[0])


(3) -> (2), if (x2[3] - x0[3]* x2[2]x0[3]* x0[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@55a2a0d8 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT(&&(&&(>(x2, 0), <(x2, x0)), >(x0, 0)), x2, x0) the following chains were created:
  • We consider the chain 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]), COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1]) which results in the following constraint:

    (1)    (&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0))=TRUEx2[0]=x2[1]x0[0]=x0[1]1204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE>(x2[0], 0)=TRUE<(x2[0], x0[0])=TRUE1204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] + [bni_18]x2[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x2[0] + x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (8)    ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [(2)bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)







For Pair COND_1204_0_MOD_LT(TRUE, x2, x0) → 1204_0_MOD_LT(x0, x2) the following chains were created:
  • We consider the chain COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1]), 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]) which results in the following constraint:

    (9)    (x0[1]=x2[0]x2[1]=x0[0]COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (9) using rule (IV) which results in the following new constraint:

    (10)    (COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)



  • We consider the chain COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1]), 1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]) which results in the following constraint:

    (15)    (x0[1]=x2[2]x2[1]=x0[2]COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (15) using rule (IV) which results in the following new constraint:

    (16)    (COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (19) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (20)    ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)







For Pair 1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT1(&&(>=(x2, x0), >(x0, 0)), x2, x0) the following chains were created:
  • We consider the chain 1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(-(x2[3], x0[3]), x0[3]) which results in the following constraint:

    (21)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]1204_0_MOD_LT(x2[2], x0[2])≥NonInfC∧1204_0_MOD_LT(x2[2], x0[2])≥COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))



    We simplified constraint (21) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (22)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUE1204_0_MOD_LT(x2[2], x0[2])≥NonInfC∧1204_0_MOD_LT(x2[2], x0[2])≥COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])∧(UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (26)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[(-1)bso_23] + x0[2] ≥ 0)



    We simplified constraint (26) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (27)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)Bound*bni_22 + bni_22] + [(2)bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[1 + (-1)bso_23] + x0[2] ≥ 0)







For Pair COND_1204_0_MOD_LT1(TRUE, x2, x0) → 1204_0_MOD_LT(-(x2, x0), x0) the following chains were created:
  • We consider the chain 1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(-(x2[3], x0[3]), x0[3]), 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]) which results in the following constraint:

    (28)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]-(x2[3], x0[3])=x2[0]x0[3]=x0[0]COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (28) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (29)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUECOND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥1204_0_MOD_LT(-(x2[2], x0[2]), x0[2])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



  • We consider the chain 1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]), COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(-(x2[3], x0[3]), x0[3]), 1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2]) which results in the following constraint:

    (35)    (&&(>=(x2[2], x0[2]), >(x0[2], 0))=TRUEx2[2]=x2[3]x0[2]=x0[3]-(x2[3], x0[3])=x2[2]1x0[3]=x0[2]1COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3])≥1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (35) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (36)    (>=(x2[2], x0[2])=TRUE>(x0[2], 0)=TRUECOND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥NonInfC∧COND_1204_0_MOD_LT1(TRUE, x2[2], x0[2])≥1204_0_MOD_LT(-(x2[2], x0[2]), x0[2])∧(UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥))



    We simplified constraint (36) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (37)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (37) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (38)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (38) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (39)    (x2[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    (x2[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (40) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (41)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT(&&(&&(>(x2, 0), <(x2, x0)), >(x0, 0)), x2, x0)
    • ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(2)bni_18 + (-1)Bound*bni_18] + [(2)bni_18]x2[0] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)

  • COND_1204_0_MOD_LT(TRUE, x2, x0) → 1204_0_MOD_LT(x0, x2)
    • ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
    • ((UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_20] = 0∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)

  • 1204_0_MOD_LT(x2, x0) → COND_1204_0_MOD_LT1(&&(>=(x2, x0), >(x0, 0)), x2, x0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])), ≥)∧[(-1)Bound*bni_22 + bni_22] + [(2)bni_22]x0[2] + [bni_22]x2[2] ≥ 0∧[1 + (-1)bso_23] + x0[2] ≥ 0)

  • COND_1204_0_MOD_LT1(TRUE, x2, x0) → 1204_0_MOD_LT(-(x2, x0), x0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[2] + [bni_24]x2[2] ≥ 0∧[(-1)bso_25] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1204_0_MOD_LT(x1, x2)) = [-1] + x2 + x1   
POL(COND_1204_0_MOD_LT(x1, x2, x3)) = [-1] + x3 + x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(COND_1204_0_MOD_LT1(x1, x2, x3)) = [-1] + x2 + [-1]x1   
POL(>=(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   

The following pairs are in P>:

1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])

The following pairs are in Pbound:

1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
1204_0_MOD_LT(x2[2], x0[2]) → COND_1204_0_MOD_LT1(&&(>=(x2[2], x0[2]), >(x0[2], 0)), x2[2], x0[2])
COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])

The following pairs are in P:

1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])
COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(-(x2[3], x0[3]), x0[3])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0, x2[0], x0[0])
(1): COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])
(3): COND_1204_0_MOD_LT1(TRUE, x2[3], x0[3]) → 1204_0_MOD_LT(x2[3] - x0[3], x0[3])

(1) -> (0), if (x0[1]* x2[0]x2[1]* x0[0])


(3) -> (0), if (x2[3] - x0[3]* x2[0]x0[3]* x0[0])


(0) -> (1), if (x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0x2[0]* x2[1]x0[0]* x0[1])



The set Q is empty.

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])
(0): 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0, x2[0], x0[0])

(1) -> (0), if (x0[1]* x2[0]x2[1]* x0[0])


(0) -> (1), if (x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0x2[0]* x2[1]x0[0]* x0[1])



The set Q is empty.

(11) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@55a2a0d8 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1]) the following chains were created:
  • We consider the chain 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]), COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1]), 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]) which results in the following constraint:

    (1)    (&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0))=TRUEx2[0]=x2[1]x0[0]=x0[1]x0[1]=x2[0]1x2[1]=x0[0]1COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[1], x0[1])≥1204_0_MOD_LT(x0[1], x2[1])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE>(x2[0], 0)=TRUE<(x2[0], x0[0])=TRUECOND_1204_0_MOD_LT(TRUE, x2[0], x0[0])≥NonInfC∧COND_1204_0_MOD_LT(TRUE, x2[0], x0[0])≥1204_0_MOD_LT(x0[0], x2[0])∧(UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x2[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x2[0] + x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (8)    ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)







For Pair 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]) the following chains were created:
  • We consider the chain COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1]), 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0]), COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1]) which results in the following constraint:

    (9)    (x0[1]=x2[0]x2[1]=x0[0]&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0))=TRUEx2[0]=x2[1]1x0[0]=x0[1]11204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))



    We simplified constraint (9) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (10)    (>(x0[0], 0)=TRUE>(x2[0], 0)=TRUE<(x2[0], x0[0])=TRUE1204_0_MOD_LT(x2[0], x0[0])≥NonInfC∧1204_0_MOD_LT(x2[0], x0[0])≥COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])∧(UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[-2 + (-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[-2 + (-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[-2 + (-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] + [(-1)bni_15]x2[0] ≥ 0∧[(-1)bso_16] + [2]x0[0] + [-2]x2[0] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    (x2[0] + x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] ≥ 0∧[(-1)bso_16] + [2]x0[0] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] ≥ 0∧[(-1)bso_16] + [2]x0[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])
    • ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1204_0_MOD_LT(x0[1], x2[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] ≥ 0)

  • 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])
    • ([1] + x2[0] + x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[0] ≥ 0∧[(-1)bso_16] + [2]x0[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1204_0_MOD_LT(x1, x2, x3)) = [1] + [-1]x3 + x2 + [-1]x1   
POL(1204_0_MOD_LT(x1, x2)) = [-1] + x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   

The following pairs are in P>:

COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])

The following pairs are in Pbound:

1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])

The following pairs are in P:

1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(&&(&&(>(x2[0], 0), <(x2[0], x0[0])), >(x0[0], 0)), x2[0], x0[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1204_0_MOD_LT(x2[0], x0[0]) → COND_1204_0_MOD_LT(x2[0] > 0 && x2[0] < x0[0] && x0[0] > 0, x2[0], x0[0])


The set Q is empty.

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1204_0_MOD_LT(TRUE, x2[1], x0[1]) → 1204_0_MOD_LT(x0[1], x2[1])


The set Q is empty.

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE